/********************************** (C) COPYRIGHT ******************************* * File Name : ch32x035_i2c.h * Author : WCH * Version : V1.0.0 * Date : 2023/04/06 * Description : This file contains all the functions prototypes for the * I2C firmware library. ********************************************************************************* * Copyright (c) 2021 Nanjing Qinheng Microelectronics Co., Ltd. * Attention: This software (modified or not) and binary are used for * microcontroller manufactured by Nanjing Qinheng Microelectronics. *******************************************************************************/ #ifndef __CH32X035_I2C_H #define __CH32X035_I2C_H #ifdef __cplusplus extern "C" { #endif #include "ch32x035.h" /* I2C Init structure definition */ typedef struct { uint32_t I2C_ClockSpeed; /* Specifies the clock frequency. This parameter must be set to a value lower than 400kHz */ uint16_t I2C_Mode; /* Specifies the I2C mode. This parameter can be a value of @ref I2C_mode */ uint16_t I2C_DutyCycle; /* Specifies the I2C fast mode duty cycle. This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */ uint16_t I2C_OwnAddress1; /* Specifies the first device own address. This parameter can be a 7-bit or 10-bit address. */ uint16_t I2C_Ack; /* Enables or disables the acknowledgement. This parameter can be a value of @ref I2C_acknowledgement */ uint16_t I2C_AcknowledgedAddress; /* Specifies if 7-bit or 10-bit address is acknowledged. This parameter can be a value of @ref I2C_acknowledged_address */ } I2C_InitTypeDef; /* I2C_mode */ #define I2C_Mode_I2C ((uint16_t)0x0000) /* I2C_duty_cycle_in_fast_mode */ #define I2C_DutyCycle_16_9 ((uint16_t)0x4000) /* I2C fast mode Tlow/Thigh = 16/9 */ #define I2C_DutyCycle_2 ((uint16_t)0xBFFF) /* I2C fast mode Tlow/Thigh = 2 */ /* I2C_acknowledgement */ #define I2C_Ack_Enable ((uint16_t)0x0400) #define I2C_Ack_Disable ((uint16_t)0x0000) /* I2C_transfer_direction */ #define I2C_Direction_Transmitter ((uint8_t)0x00) #define I2C_Direction_Receiver ((uint8_t)0x01) /* I2C_acknowledged_address */ #define I2C_AcknowledgedAddress_7bit ((uint16_t)0x4000) #define I2C_AcknowledgedAddress_10bit ((uint16_t)0xC000) /* I2C_registers */ #define I2C_Register_CTLR1 ((uint8_t)0x00) #define I2C_Register_CTLR2 ((uint8_t)0x04) #define I2C_Register_OADDR1 ((uint8_t)0x08) #define I2C_Register_OADDR2 ((uint8_t)0x0C) #define I2C_Register_DATAR ((uint8_t)0x10) #define I2C_Register_STAR1 ((uint8_t)0x14) #define I2C_Register_STAR2 ((uint8_t)0x18) #define I2C_Register_CKCFGR ((uint8_t)0x1C) #define I2C_Register_RTR ((uint8_t)0x20) /* I2C_PEC_position */ #define I2C_PECPosition_Next ((uint16_t)0x0800) #define I2C_PECPosition_Current ((uint16_t)0xF7FF) /* I2C_NACK_position */ #define I2C_NACKPosition_Next ((uint16_t)0x0800) #define I2C_NACKPosition_Current ((uint16_t)0xF7FF) /* I2C_interrupts_definition */ #define I2C_IT_BUF ((uint16_t)0x0400) #define I2C_IT_EVT ((uint16_t)0x0200) #define I2C_IT_ERR ((uint16_t)0x0100) /* I2C_interrupts_definition */ #define I2C_IT_PECERR ((uint32_t)0x01001000) #define I2C_IT_OVR ((uint32_t)0x01000800) #define I2C_IT_AF ((uint32_t)0x01000400) #define I2C_IT_ARLO ((uint32_t)0x01000200) #define I2C_IT_BERR ((uint32_t)0x01000100) #define I2C_IT_TXE ((uint32_t)0x06000080) #define I2C_IT_RXNE ((uint32_t)0x06000040) #define I2C_IT_STOPF ((uint32_t)0x02000010) #define I2C_IT_ADD10 ((uint32_t)0x02000008) #define I2C_IT_BTF ((uint32_t)0x02000004) #define I2C_IT_ADDR ((uint32_t)0x02000002) #define I2C_IT_SB ((uint32_t)0x02000001) /* SR2 register flags */ #define I2C_FLAG_DUALF ((uint32_t)0x00800000) #define I2C_FLAG_GENCALL ((uint32_t)0x00100000) #define I2C_FLAG_TRA ((uint32_t)0x00040000) #define I2C_FLAG_BUSY ((uint32_t)0x00020000) #define I2C_FLAG_MSL ((uint32_t)0x00010000) /* SR1 register flags */ #define I2C_FLAG_PECERR ((uint32_t)0x10001000) #define I2C_FLAG_OVR ((uint32_t)0x10000800) #define I2C_FLAG_AF ((uint32_t)0x10000400) #define I2C_FLAG_ARLO ((uint32_t)0x10000200) #define I2C_FLAG_BERR ((uint32_t)0x10000100) #define I2C_FLAG_TXE ((uint32_t)0x10000080) #define I2C_FLAG_RXNE ((uint32_t)0x10000040) #define I2C_FLAG_STOPF ((uint32_t)0x10000010) #define I2C_FLAG_ADD10 ((uint32_t)0x10000008) #define I2C_FLAG_BTF ((uint32_t)0x10000004) #define I2C_FLAG_ADDR ((uint32_t)0x10000002) #define I2C_FLAG_SB ((uint32_t)0x10000001) /****************I2C Master Events (Events grouped in order of communication)********************/ /******************************************************************************************************************** * @brief Start communicate * * After master use I2C_GenerateSTART() function sending the START condition,the master * has to wait for event 5(the Start condition has been correctly * released on the I2C bus ). * */ /* EVT5 */ #define I2C_EVENT_MASTER_MODE_SELECT ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */ /******************************************************************************************************************** * @brief Address Acknowledge * * When start condition correctly released on the bus(check EVT5), the * master use I2C_Send7bitAddress() function sends the address of the slave(s) with which it will communicate * it also determines master as transmitter or Receiver. Then the master has to wait that a slave acknowledges * his address. If an acknowledge is sent on the bus, one of the following events will be set: * * * * 1) In case of Master Receiver (7-bit addressing): the I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED * event is set. * * 2) In case of Master Transmitter (7-bit addressing): the I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED * is set * * 3) In case of 10-Bit addressing mode, the master (after generating the START * and checking on EVT5) use I2C_SendData() function send the header of 10-bit addressing mode. * Then master wait EVT9. EVT9 means that the 10-bit addressing header has been correctly sent * on the bus. Then master should use the function I2C_Send7bitAddress() to send the second part * of the 10-bit address (LSB) . Then master should wait for event 6. * * */ /* EVT6 */ #define I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */ #define I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED ((uint32_t)0x00030002) /* BUSY, MSL and ADDR flags */ /*EVT9 */ #define I2C_EVENT_MASTER_MODE_ADDRESS10 ((uint32_t)0x00030008) /* BUSY, MSL and ADD10 flags */ /******************************************************************************************************************** * @brief Communication events * * If START condition has generated and slave address * been acknowledged. then the master has to check one of the following events for * communication procedures: * * 1) Master Receiver mode: The master has to wait on the event EVT7 then use * I2C_ReceiveData() function to read the data received from the slave . * * 2) Master Transmitter mode: The master use I2C_SendData() function to send data * then to wait on event EVT8 or EVT8_2. * These two events are similar: * - EVT8 means that the data has been written in the data register and is * being shifted out. * - EVT8_2 means that the data has been physically shifted out and output * on the bus. * In most cases, using EVT8 is sufficient for the application. * Using EVT8_2 will leads to a slower communication speed but will more reliable . * EVT8_2 is also more suitable than EVT8 for testing on the last data transmission * * * Note: * In case the user software does not guarantee that this event EVT7 is managed before * the current byte end of transfer, then user may check on I2C_EVENT_MASTER_BYTE_RECEIVED * and I2C_FLAG_BTF flag at the same time .But in this case the communication may be slower. * * */ /* Master Receive mode */ /* EVT7 */ #define I2C_EVENT_MASTER_BYTE_RECEIVED ((uint32_t)0x00030040) /* BUSY, MSL and RXNE flags */ /* Master Transmitter mode*/ /* EVT8 */ #define I2C_EVENT_MASTER_BYTE_TRANSMITTING ((uint32_t)0x00070080) /* TRA, BUSY, MSL, TXE flags */ /* EVT8_2 */ #define I2C_EVENT_MASTER_BYTE_TRANSMITTED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */ /******************I2C Slave Events (Events grouped in order of communication)******************/ /******************************************************************************************************************** * @brief Start Communicate events * * Wait on one of these events at the start of the communication. It means that * the I2C peripheral detected a start condition of master device generate on the bus. * If the acknowledge feature is enabled through function I2C_AcknowledgeConfig()),The peripheral generates an ACK condition on the bus. * * * * a) In normal case (only one address managed by the slave), when the address * sent by the master matches the own address of the peripheral (configured by * I2C_OwnAddress1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set * (where XXX could be TRANSMITTER or RECEIVER). * * b) In case the address sent by the master matches the second address of the * peripheral (configured by the function I2C_OwnAddress2Config() and enabled * by the function I2C_DualAddressCmd()) the events I2C_EVENT_SLAVE_XXX_SECONDADDRESS_MATCHED * (where XXX could be TRANSMITTER or RECEIVER) are set. * * c) In case the address sent by the master is General Call (address 0x00) and * if the General Call is enabled for the peripheral (using function I2C_GeneralCallCmd()) * the following event is set I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED. * */ /* EVT1 */ /* a) Case of One Single Address managed by the slave */ #define I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */ #define I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */ /* b) Case of Dual address managed by the slave */ #define I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED ((uint32_t)0x00820000) /* DUALF and BUSY flags */ #define I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED ((uint32_t)0x00860080) /* DUALF, TRA, BUSY and TXE flags */ /* c) Case of General Call enabled for the slave */ #define I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED ((uint32_t)0x00120000) /* GENCALL and BUSY flags */ /******************************************************************************************************************** * @brief Communication events * * Wait on one of these events when EVT1 has already been checked : * * - Slave Receiver mode: * - EVT2--The device is expecting to receive a data byte . * - EVT4--The device is expecting the end of the communication: master * sends a stop condition and data transmission is stopped. * * - Slave Transmitter mode: * - EVT3--When a byte has been transmitted by the slave and the Master is expecting * the end of the byte transmission. The two events I2C_EVENT_SLAVE_BYTE_TRANSMITTED and * I2C_EVENT_SLAVE_BYTE_TRANSMITTING are similar. If the user software doesn't guarantee * the EVT3 is managed before the current byte end of transfer The second one can optionally * be used. * - EVT3_2--When the master sends a NACK to tell slave device that data transmission * shall end . The slave device has to stop sending * data bytes and wait a Stop condition from bus. * * Note: * If the user software does not guarantee that the event 2 is * managed before the current byte end of transfer, User may check on I2C_EVENT_SLAVE_BYTE_RECEIVED * and I2C_FLAG_BTF flag at the same time . * In this case the communication will be slower. * */ /* Slave Receiver mode*/ /* EVT2 */ #define I2C_EVENT_SLAVE_BYTE_RECEIVED ((uint32_t)0x00020040) /* BUSY and RXNE flags */ /* EVT4 */ #define I2C_EVENT_SLAVE_STOP_DETECTED ((uint32_t)0x00000010) /* STOPF flag */ /* Slave Transmitter mode*/ /* EVT3 */ #define I2C_EVENT_SLAVE_BYTE_TRANSMITTED ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */ #define I2C_EVENT_SLAVE_BYTE_TRANSMITTING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */ /*EVT3_2 */ #define I2C_EVENT_SLAVE_ACK_FAILURE ((uint32_t)0x00000400) /* AF flag */ void I2C_DeInit(I2C_TypeDef *I2Cx); void I2C_Init(I2C_TypeDef *I2Cx, I2C_InitTypeDef *I2C_InitStruct); void I2C_StructInit(I2C_InitTypeDef *I2C_InitStruct); void I2C_Cmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_DMACmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_DMALastTransferCmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_GenerateSTART(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_GenerateSTOP(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_AcknowledgeConfig(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_OwnAddress2Config(I2C_TypeDef *I2Cx, uint8_t Address); void I2C_DualAddressCmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_GeneralCallCmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_ITConfig(I2C_TypeDef *I2Cx, uint16_t I2C_IT, FunctionalState NewState); void I2C_SendData(I2C_TypeDef *I2Cx, uint8_t Data); uint8_t I2C_ReceiveData(I2C_TypeDef *I2Cx); void I2C_Send7bitAddress(I2C_TypeDef *I2Cx, uint8_t Address, uint8_t I2C_Direction); uint16_t I2C_ReadRegister(I2C_TypeDef *I2Cx, uint8_t I2C_Register); void I2C_SoftwareResetCmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_NACKPositionConfig(I2C_TypeDef *I2Cx, uint16_t I2C_NACKPosition); void I2C_TransmitPEC(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_PECPositionConfig(I2C_TypeDef *I2Cx, uint16_t I2C_PECPosition); void I2C_CalculatePEC(I2C_TypeDef *I2Cx, FunctionalState NewState); uint8_t I2C_GetPEC(I2C_TypeDef *I2Cx); void I2C_ARPCmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_StretchClockCmd(I2C_TypeDef *I2Cx, FunctionalState NewState); void I2C_FastModeDutyCycleConfig(I2C_TypeDef *I2Cx, uint16_t I2C_DutyCycle); /***************************************************************************************** * * I2C State Monitoring Functions * **************************************************************************************** * This I2C driver provides three different ways for I2C state monitoring * profit the application requirements and constraints: * * * a) First way: * Using I2C_CheckEvent() function: * It compares the status registers (STARR1 and STAR2) content to a given event * (can be the combination of more flags). * If the current status registers includes the given flags will return SUCCESS. * and if the current status registers miss flags will returns ERROR. * - When to use: * - This function is suitable for most applications as well as for startup * activity since the events are fully described in the product reference manual * (CH64xRM). * - It is also suitable for users who need to define their own events. * - Limitations: * - If an error occurs besides to the monitored error, * the I2C_CheckEvent() function may return SUCCESS despite the communication * in corrupted state. it is suggeted to use error interrupts to monitor the error * events and handle them in IRQ handler. * * * Note: * The following functions are recommended for error management: : * - I2C_ITConfig() main function of configure and enable the error interrupts. * - I2Cx_ER_IRQHandler() will be called when the error interrupt happen. * Where x is the peripheral instance (I2C1, I2C2 ...) * - I2Cx_ER_IRQHandler() will call I2C_GetFlagStatus() or I2C_GetITStatus() functions * to determine which error occurred. * - I2C_ClearFlag() \ I2C_ClearITPendingBit() \ I2C_SoftwareResetCmd() * \ I2C_GenerateStop() will be use to clear the error flag and source, * and return to correct communication status. * * * b) Second way: * Using the function to get a single word(uint32_t) composed of status register 1 and register 2. * (Status Register 2 value is shifted left by 16 bits and concatenated to Status Register 1). * - When to use: * * - This function is suitable for the same applications above but it * don't have the limitations of I2C_GetFlagStatus() function . * The returned value could be compared to events already defined in the * library (ch64x_i2c.h) or to custom values defined by user. * - This function can be used to monitor the status of multiple flags simultaneously. * - Contrary to the I2C_CheckEvent () function, this function can choose the time to * accept the event according to the user's needs (when all event flags are set and * no other flags are set, or only when the required flags are set) * * - Limitations: * - User may need to define his own events. * - Same remark concerning the error management is applicable for this * function if user decides to check only regular communication flags (and * ignores error flags). * * * c) Third way: * Using the function I2C_GetFlagStatus() get the status of * one single flag . * - When to use: * - This function could be used for specific applications or in debug phase. * - It is suitable when only one flag checking is needed . * * - Limitations: * - Call this function to access the status register. Some flag bits may be cleared. * - Function may need to be called twice or more in order to monitor one single event. */ /********************************************************* * * a) Basic state monitoring(First way) ******************************************************** */ ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT); /********************************************************* * * b) Advanced state monitoring(Second way:) ******************************************************** */ uint32_t I2C_GetLastEvent(I2C_TypeDef* I2Cx); /********************************************************* * * c) Flag-based state monitoring(Third way) ********************************************************* */ FlagStatus I2C_GetFlagStatus(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG); void I2C_ClearFlag(I2C_TypeDef *I2Cx, uint32_t I2C_FLAG); ITStatus I2C_GetITStatus(I2C_TypeDef *I2Cx, uint32_t I2C_IT); void I2C_ClearITPendingBit(I2C_TypeDef *I2Cx, uint32_t I2C_IT); #ifdef __cplusplus } #endif #endif