Kinda works... ish

This commit is contained in:
Thomas Muller 2021-09-28 15:30:05 +00:00
parent 3db39b9ec3
commit c0d20e2f7b
4 changed files with 41 additions and 28 deletions

View file

@ -4,7 +4,7 @@
use_gazebo: false # Whether the robot is started in a Gazebo simulation environment
## Properties of incoming commands
command_in_type: "unitless" # "unitless"> in the range [-1:1], as if from joystick. "speed_units"> cmds are in m/s and rad/s
command_in_type: "speed_units" # "unitless"> in the range [-1:1], as if from joystick. "speed_units"> cmds are in m/s and rad/s
scale:
# Scale parameters are only used if command_in_type=="unitless"
linear: 0.4 # Max linear velocity. Meters per publish_period. Unit is [m/s]. Only used for Cartesian commands.
@ -14,7 +14,7 @@ scale:
## Properties of outgoing commands
publish_period: 0.034 # 1/Nominal publish rate [seconds]
low_latency_mode: false # Set this to true to publish as soon as an incoming Twist command is received (publish_period is ignored)
low_latency_mode: true # Set this to true to publish as soon as an incoming Twist command is received (publish_period is ignored)
# What type of topic does your robot driver expect?
# Currently supported are std_msgs/Float64MultiArray or trajectory_msgs/JointTrajectory
@ -37,14 +37,14 @@ ee_frame_name: link_6 # The name of the end effector link, used to return the E
robot_link_command_frame: base_link # commands must be given in the frame of a robot link. Usually either the base or end effector
## Stopping behaviour
incoming_command_timeout: 0.1 # Stop servoing if X seconds elapse without a new command
incoming_command_timeout: 10.1 # Stop servoing if X seconds elapse without a new command
# If 0, republish commands forever even if the robot is stationary. Otherwise, specify num. to publish.
# Important because ROS may drop some messages and we need the robot to halt reliably.
num_outgoing_halt_msgs_to_publish: 4
## Configure handling of singularities and joint limits
lower_singularity_threshold: 17.0 # Start decelerating when the condition number hits this (close to singularity)
hard_stop_singularity_threshold: 30.0 # Stop when the condition number hits this
lower_singularity_threshold: 170000.0 # Start decelerating when the condition number hits this (close to singularity)
hard_stop_singularity_threshold: 300000.0 # Stop when the condition number hits this
joint_limit_margin: 0.1 # added as a buffer to joint limits [radians]. If moving quickly, make this larger.
## Topic names
@ -53,9 +53,10 @@ joint_command_in_topic: ~/delta_joint_cmds # Topic for incoming joint angle comm
joint_topic: /joint_states
status_topic: ~/status # Publish status to this topic
command_out_topic: /joint_trajectory_controller/joint_trajectory # Publish outgoing commands here
# command_out_topic: /gaycunts # Publish outgoing commands here
## Collision checking for the entire robot body
check_collisions: true # Check collisions?
check_collisions: false # Check collisions?
collision_check_rate: 10.0 # [Hz] Collision-checking can easily bog down a CPU if done too often.
# Two collision check algorithms are available:
# "threshold_distance" begins slowing down when nearer than a specified distance. Good if you want to tune collision thresholds manually.

View file

@ -63,6 +63,7 @@ def generate_launch_description():
{'moveit_servo': get_yaml(join(config_root, 'ar3_joy.yaml'))},
robot_description,
robot_description_semantic,
robot_description_kinematics,
],
extra_arguments=[{"use_intra_process_comms": True}],
),

View file

@ -54,11 +54,11 @@ class CobotMove(Node):
print(self._serial.readline())
def _move_j1_cb(self, msg):
self._cur[0] = int(msg.data / pi / 2. * 8000)
self._cur[0] = int(msg.data / pi / 2. * 8000 * 4)
self._move_servo()
def _move_j2_cb(self, msg):
self._cur[1] = int(msg.data / pi / 2. * 10000)
self._cur[1] = int(msg.data / pi / 2. * 10000 * 4)
self._move_servo()
def _move_j3_cb(self, msg):
@ -84,8 +84,8 @@ class CobotMove(Node):
line = self._serial.readline().decode('UTF-8')
blocks = re.findall(r'[ABCDEF]-*\d+', line)
a = float(blocks[0][1:]) / 8000. * pi * 2.
b = float(blocks[1][1:]) / 10000 * pi * 2.
a = float(blocks[0][1:]) / 8000. / 4. * pi * 2.
b = float(blocks[1][1:]) / 10000 / 4. * pi * 2.
c = float(blocks[2][1:]) / 10000. * pi * 2.
d = float(blocks[3][1:]) / 2000. * pi * 2.
e = float(blocks[4][1:]) / 2000. * pi * 2.

View file

@ -6,6 +6,7 @@ from std_srvs.srv import Trigger
from std_msgs.msg import Float32
from sensor_msgs.msg import Joy
from geometry_msgs.msg import TwistStamped
from control_msgs.msg import JointJog
from moveit_msgs.msg import PlanningScene, PlanningSceneWorld
from enum import Enum
@ -42,15 +43,16 @@ class JoyMove(Node):
self._logger.info('joystick init')
JOY_TOPIC = '/joy'
TWIST_TOPIC = '/servo_server/delta_twist_cmds'
# JOINT_TOPIC = '/servo_server/delta_joint_cmds'
# TWIST_TOPIC = '/servo_server/delta_twist_cmds'
JOINT_TOPIC = '/servo_server/delta_joint_cmds'
# EE = 'joint_6'
# BASE = 'base_link'
self.create_subscription(Joy, '/joy', self._joy_cb, rclpy.qos.qos_profile_sensor_data)
self.twist_pub = self.create_publisher(TwistStamped, TWIST_TOPIC, 10);
self.collision_pub = self.create_publisher(PlanningScene, "/planning_scene", 10);
# self.twist_pub = self.create_publisher(TwistStamped, TWIST_TOPIC, 10);
self.joint_pub = self.create_publisher(JointJog, JOINT_TOPIC, 10);
# self.collision_pub = self.create_publisher(PlanningScene, "/planning_scene", 10);
self.servo_client = self.create_client(Trigger, '/servo_server/start_servo')
# Check if the a service is available
@ -72,26 +74,35 @@ class JoyMove(Node):
axes = msg.axes
buttons = msg.buttons
ts = TwistStamped()
# ts = TwistStamped()
jj = JointJog()
ts.twist.linear.z = axes[Axes.RIGHT_Y.value]
ts.twist.linear.y = axes[Axes.RIGHT_X.value]
jj.joint_names = ['joint_2']
# jj.displacements = [axes[0]]
jj.velocities = [axes[0]]
# jj.duration = 1.0
# ts.twist.linear.z = axes[Axes.RIGHT_Y.value]
# ts.twist.linear.y = axes[Axes.RIGHT_X.value]
lin_x_right = -0.5 * axes[Axes.R1.value] # - AXIS_DEFAULTS.at(R1));
lin_x_left = 0.5 * axes[Axes.L1.value] # - AXIS_DEFAULTS.at(L1));
ts.twist.linear.x = lin_x_right + lin_x_left
# lin_x_right = -0.5 * axes[Axes.R1.value] # - AXIS_DEFAULTS.at(R1));
# lin_x_left = 0.5 * axes[Axes.L1.value] # - AXIS_DEFAULTS.at(L1));
# ts.twist.linear.x = lin_x_right + lin_x_left
ts.twist.angular.y = axes[Axes.LEFT_Y.value]
ts.twist.angular.x = axes[Axes.LEFT_X.value]
# ts.twist.angular.y = axes[Axes.LEFT_Y.value]
# ts.twist.angular.x = axes[Axes.LEFT_X.value]
roll_positive = buttons[Buttons.R2.value]
roll_negative = -1 * buttons[Buttons.L2.value]
ts.twist.angular.z = float(roll_positive + roll_negative)
# roll_positive = buttons[Buttons.R2.value]
# roll_negative = -1 * buttons[Buttons.L2.value]
# ts.twist.angular.z = float(roll_positive + roll_negative)
ts.header.stamp = self.get_clock().now().to_msg()
ts.header.frame_id = "base_link"
# ts.header.stamp = self.get_clock().now().to_msg()
# ts.header.frame_id = "base_link"
self.twist_pub.publish(ts)
jj.header.stamp = self.get_clock().now().to_msg()
jj.header.frame_id = "base_link"
# self.twist_pub.publish(ts)
self.joint_pub.publish(jj)
def main(args=None):