CH32X03x/Peripheral/inc/ch32x035_i2c.h

417 lines
22 KiB
C
Raw Normal View History

2024-03-20 23:59:40 -04:00
/********************************** (C) COPYRIGHT *******************************
* File Name : ch32x035_i2c.h
* Author : WCH
* Version : V1.0.0
* Date : 2023/04/06
* Description : This file contains all the functions prototypes for the
* I2C firmware library.
*********************************************************************************
* Copyright (c) 2021 Nanjing Qinheng Microelectronics Co., Ltd.
* Attention: This software (modified or not) and binary are used for
* microcontroller manufactured by Nanjing Qinheng Microelectronics.
*******************************************************************************/
#ifndef __CH32X035_I2C_H
#define __CH32X035_I2C_H
#ifdef __cplusplus
extern "C" {
#endif
#include "ch32x035.h"
/* I2C Init structure definition */
typedef struct
{
uint32_t I2C_ClockSpeed; /* Specifies the clock frequency.
This parameter must be set to a value lower than 400kHz */
uint16_t I2C_Mode; /* Specifies the I2C mode.
This parameter can be a value of @ref I2C_mode */
uint16_t I2C_DutyCycle; /* Specifies the I2C fast mode duty cycle.
This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */
uint16_t I2C_OwnAddress1; /* Specifies the first device own address.
This parameter can be a 7-bit or 10-bit address. */
uint16_t I2C_Ack; /* Enables or disables the acknowledgement.
This parameter can be a value of @ref I2C_acknowledgement */
uint16_t I2C_AcknowledgedAddress; /* Specifies if 7-bit or 10-bit address is acknowledged.
This parameter can be a value of @ref I2C_acknowledged_address */
} I2C_InitTypeDef;
/* I2C_mode */
#define I2C_Mode_I2C ((uint16_t)0x0000)
/* I2C_duty_cycle_in_fast_mode */
#define I2C_DutyCycle_16_9 ((uint16_t)0x4000) /* I2C fast mode Tlow/Thigh = 16/9 */
#define I2C_DutyCycle_2 ((uint16_t)0xBFFF) /* I2C fast mode Tlow/Thigh = 2 */
/* I2C_acknowledgement */
#define I2C_Ack_Enable ((uint16_t)0x0400)
#define I2C_Ack_Disable ((uint16_t)0x0000)
/* I2C_transfer_direction */
#define I2C_Direction_Transmitter ((uint8_t)0x00)
#define I2C_Direction_Receiver ((uint8_t)0x01)
/* I2C_acknowledged_address */
#define I2C_AcknowledgedAddress_7bit ((uint16_t)0x4000)
#define I2C_AcknowledgedAddress_10bit ((uint16_t)0xC000)
/* I2C_registers */
#define I2C_Register_CTLR1 ((uint8_t)0x00)
#define I2C_Register_CTLR2 ((uint8_t)0x04)
#define I2C_Register_OADDR1 ((uint8_t)0x08)
#define I2C_Register_OADDR2 ((uint8_t)0x0C)
#define I2C_Register_DATAR ((uint8_t)0x10)
#define I2C_Register_STAR1 ((uint8_t)0x14)
#define I2C_Register_STAR2 ((uint8_t)0x18)
#define I2C_Register_CKCFGR ((uint8_t)0x1C)
#define I2C_Register_RTR ((uint8_t)0x20)
/* I2C_PEC_position */
#define I2C_PECPosition_Next ((uint16_t)0x0800)
#define I2C_PECPosition_Current ((uint16_t)0xF7FF)
/* I2C_NACK_position */
#define I2C_NACKPosition_Next ((uint16_t)0x0800)
#define I2C_NACKPosition_Current ((uint16_t)0xF7FF)
/* I2C_interrupts_definition */
#define I2C_IT_BUF ((uint16_t)0x0400)
#define I2C_IT_EVT ((uint16_t)0x0200)
#define I2C_IT_ERR ((uint16_t)0x0100)
/* I2C_interrupts_definition */
#define I2C_IT_PECERR ((uint32_t)0x01001000)
#define I2C_IT_OVR ((uint32_t)0x01000800)
#define I2C_IT_AF ((uint32_t)0x01000400)
#define I2C_IT_ARLO ((uint32_t)0x01000200)
#define I2C_IT_BERR ((uint32_t)0x01000100)
#define I2C_IT_TXE ((uint32_t)0x06000080)
#define I2C_IT_RXNE ((uint32_t)0x06000040)
#define I2C_IT_STOPF ((uint32_t)0x02000010)
#define I2C_IT_ADD10 ((uint32_t)0x02000008)
#define I2C_IT_BTF ((uint32_t)0x02000004)
#define I2C_IT_ADDR ((uint32_t)0x02000002)
#define I2C_IT_SB ((uint32_t)0x02000001)
/* SR2 register flags */
#define I2C_FLAG_DUALF ((uint32_t)0x00800000)
#define I2C_FLAG_GENCALL ((uint32_t)0x00100000)
#define I2C_FLAG_TRA ((uint32_t)0x00040000)
#define I2C_FLAG_BUSY ((uint32_t)0x00020000)
#define I2C_FLAG_MSL ((uint32_t)0x00010000)
/* SR1 register flags */
#define I2C_FLAG_PECERR ((uint32_t)0x10001000)
#define I2C_FLAG_OVR ((uint32_t)0x10000800)
#define I2C_FLAG_AF ((uint32_t)0x10000400)
#define I2C_FLAG_ARLO ((uint32_t)0x10000200)
#define I2C_FLAG_BERR ((uint32_t)0x10000100)
#define I2C_FLAG_TXE ((uint32_t)0x10000080)
#define I2C_FLAG_RXNE ((uint32_t)0x10000040)
#define I2C_FLAG_STOPF ((uint32_t)0x10000010)
#define I2C_FLAG_ADD10 ((uint32_t)0x10000008)
#define I2C_FLAG_BTF ((uint32_t)0x10000004)
#define I2C_FLAG_ADDR ((uint32_t)0x10000002)
#define I2C_FLAG_SB ((uint32_t)0x10000001)
/****************I2C Master Events (Events grouped in order of communication)********************/
/********************************************************************************************************************
* @brief Start communicate
*
* After master use I2C_GenerateSTART() function sending the START condition,the master
* has to wait for event 5(the Start condition has been correctly
* released on the I2C bus ).
*
*/
/* EVT5 */
#define I2C_EVENT_MASTER_MODE_SELECT ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */
/********************************************************************************************************************
* @brief Address Acknowledge
*
* When start condition correctly released on the bus(check EVT5), the
* master use I2C_Send7bitAddress() function sends the address of the slave(s) with which it will communicate
* it also determines master as transmitter or Receiver. Then the master has to wait that a slave acknowledges
* his address. If an acknowledge is sent on the bus, one of the following events will be set:
*
*
*
* 1) In case of Master Receiver (7-bit addressing): the I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED
* event is set.
*
* 2) In case of Master Transmitter (7-bit addressing): the I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED
* is set
*
* 3) In case of 10-Bit addressing mode, the master (after generating the START
* and checking on EVT5) use I2C_SendData() function send the header of 10-bit addressing mode.
* Then master wait EVT9. EVT9 means that the 10-bit addressing header has been correctly sent
* on the bus. Then master should use the function I2C_Send7bitAddress() to send the second part
* of the 10-bit address (LSB) . Then master should wait for event 6.
*
*
*/
/* EVT6 */
#define I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */
#define I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED ((uint32_t)0x00030002) /* BUSY, MSL and ADDR flags */
/*EVT9 */
#define I2C_EVENT_MASTER_MODE_ADDRESS10 ((uint32_t)0x00030008) /* BUSY, MSL and ADD10 flags */
/********************************************************************************************************************
* @brief Communication events
*
* If START condition has generated and slave address
* been acknowledged. then the master has to check one of the following events for
* communication procedures:
*
* 1) Master Receiver mode: The master has to wait on the event EVT7 then use
* I2C_ReceiveData() function to read the data received from the slave .
*
* 2) Master Transmitter mode: The master use I2C_SendData() function to send data
* then to wait on event EVT8 or EVT8_2.
* These two events are similar:
* - EVT8 means that the data has been written in the data register and is
* being shifted out.
* - EVT8_2 means that the data has been physically shifted out and output
* on the bus.
* In most cases, using EVT8 is sufficient for the application.
* Using EVT8_2 will leads to a slower communication speed but will more reliable .
* EVT8_2 is also more suitable than EVT8 for testing on the last data transmission
*
*
* Note:
* In case the user software does not guarantee that this event EVT7 is managed before
* the current byte end of transfer, then user may check on I2C_EVENT_MASTER_BYTE_RECEIVED
* and I2C_FLAG_BTF flag at the same time .But in this case the communication may be slower.
*
*
*/
/* Master Receive mode */
/* EVT7 */
#define I2C_EVENT_MASTER_BYTE_RECEIVED ((uint32_t)0x00030040) /* BUSY, MSL and RXNE flags */
/* Master Transmitter mode*/
/* EVT8 */
#define I2C_EVENT_MASTER_BYTE_TRANSMITTING ((uint32_t)0x00070080) /* TRA, BUSY, MSL, TXE flags */
/* EVT8_2 */
#define I2C_EVENT_MASTER_BYTE_TRANSMITTED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */
/******************I2C Slave Events (Events grouped in order of communication)******************/
/********************************************************************************************************************
* @brief Start Communicate events
*
* Wait on one of these events at the start of the communication. It means that
* the I2C peripheral detected a start condition of master device generate on the bus.
* If the acknowledge feature is enabled through function I2C_AcknowledgeConfig()),The peripheral generates an ACK condition on the bus.
*
*
*
* a) In normal case (only one address managed by the slave), when the address
* sent by the master matches the own address of the peripheral (configured by
* I2C_OwnAddress1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set
* (where XXX could be TRANSMITTER or RECEIVER).
*
* b) In case the address sent by the master matches the second address of the
* peripheral (configured by the function I2C_OwnAddress2Config() and enabled
* by the function I2C_DualAddressCmd()) the events I2C_EVENT_SLAVE_XXX_SECONDADDRESS_MATCHED
* (where XXX could be TRANSMITTER or RECEIVER) are set.
*
* c) In case the address sent by the master is General Call (address 0x00) and
* if the General Call is enabled for the peripheral (using function I2C_GeneralCallCmd())
* the following event is set I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED.
*
*/
/* EVT1 */
/* a) Case of One Single Address managed by the slave */
#define I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */
#define I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */
/* b) Case of Dual address managed by the slave */
#define I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED ((uint32_t)0x00820000) /* DUALF and BUSY flags */
#define I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED ((uint32_t)0x00860080) /* DUALF, TRA, BUSY and TXE flags */
/* c) Case of General Call enabled for the slave */
#define I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED ((uint32_t)0x00120000) /* GENCALL and BUSY flags */
/********************************************************************************************************************
* @brief Communication events
*
* Wait on one of these events when EVT1 has already been checked :
*
* - Slave Receiver mode:
* - EVT2--The device is expecting to receive a data byte .
* - EVT4--The device is expecting the end of the communication: master
* sends a stop condition and data transmission is stopped.
*
* - Slave Transmitter mode:
* - EVT3--When a byte has been transmitted by the slave and the Master is expecting
* the end of the byte transmission. The two events I2C_EVENT_SLAVE_BYTE_TRANSMITTED and
* I2C_EVENT_SLAVE_BYTE_TRANSMITTING are similar. If the user software doesn't guarantee
* the EVT3 is managed before the current byte end of transfer The second one can optionally
* be used.
* - EVT3_2--When the master sends a NACK to tell slave device that data transmission
* shall end . The slave device has to stop sending
* data bytes and wait a Stop condition from bus.
*
* Note:
* If the user software does not guarantee that the event 2 is
* managed before the current byte end of transfer, User may check on I2C_EVENT_SLAVE_BYTE_RECEIVED
* and I2C_FLAG_BTF flag at the same time .
* In this case the communication will be slower.
*
*/
/* Slave Receiver mode*/
/* EVT2 */
#define I2C_EVENT_SLAVE_BYTE_RECEIVED ((uint32_t)0x00020040) /* BUSY and RXNE flags */
/* EVT4 */
#define I2C_EVENT_SLAVE_STOP_DETECTED ((uint32_t)0x00000010) /* STOPF flag */
/* Slave Transmitter mode*/
/* EVT3 */
#define I2C_EVENT_SLAVE_BYTE_TRANSMITTED ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */
#define I2C_EVENT_SLAVE_BYTE_TRANSMITTING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */
/*EVT3_2 */
#define I2C_EVENT_SLAVE_ACK_FAILURE ((uint32_t)0x00000400) /* AF flag */
void I2C_DeInit(I2C_TypeDef *I2Cx);
void I2C_Init(I2C_TypeDef *I2Cx, I2C_InitTypeDef *I2C_InitStruct);
void I2C_StructInit(I2C_InitTypeDef *I2C_InitStruct);
void I2C_Cmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_DMACmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_DMALastTransferCmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_GenerateSTART(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_GenerateSTOP(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_AcknowledgeConfig(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_OwnAddress2Config(I2C_TypeDef *I2Cx, uint8_t Address);
void I2C_DualAddressCmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_GeneralCallCmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_ITConfig(I2C_TypeDef *I2Cx, uint16_t I2C_IT, FunctionalState NewState);
void I2C_SendData(I2C_TypeDef *I2Cx, uint8_t Data);
uint8_t I2C_ReceiveData(I2C_TypeDef *I2Cx);
void I2C_Send7bitAddress(I2C_TypeDef *I2Cx, uint8_t Address, uint8_t I2C_Direction);
uint16_t I2C_ReadRegister(I2C_TypeDef *I2Cx, uint8_t I2C_Register);
void I2C_SoftwareResetCmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_NACKPositionConfig(I2C_TypeDef *I2Cx, uint16_t I2C_NACKPosition);
void I2C_TransmitPEC(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_PECPositionConfig(I2C_TypeDef *I2Cx, uint16_t I2C_PECPosition);
void I2C_CalculatePEC(I2C_TypeDef *I2Cx, FunctionalState NewState);
uint8_t I2C_GetPEC(I2C_TypeDef *I2Cx);
void I2C_ARPCmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_StretchClockCmd(I2C_TypeDef *I2Cx, FunctionalState NewState);
void I2C_FastModeDutyCycleConfig(I2C_TypeDef *I2Cx, uint16_t I2C_DutyCycle);
/*****************************************************************************************
*
* I2C State Monitoring Functions
*
****************************************************************************************
* This I2C driver provides three different ways for I2C state monitoring
* profit the application requirements and constraints:
*
*
* a) First way:
* Using I2C_CheckEvent() function:
* It compares the status registers (STARR1 and STAR2) content to a given event
* (can be the combination of more flags).
* If the current status registers includes the given flags will return SUCCESS.
* and if the current status registers miss flags will returns ERROR.
* - When to use:
* - This function is suitable for most applications as well as for startup
* activity since the events are fully described in the product reference manual
* (CH64xRM).
* - It is also suitable for users who need to define their own events.
* - Limitations:
* - If an error occurs besides to the monitored error,
* the I2C_CheckEvent() function may return SUCCESS despite the communication
* in corrupted state. it is suggeted to use error interrupts to monitor the error
* events and handle them in IRQ handler.
*
*
* Note:
* The following functions are recommended for error management: :
* - I2C_ITConfig() main function of configure and enable the error interrupts.
* - I2Cx_ER_IRQHandler() will be called when the error interrupt happen.
* Where x is the peripheral instance (I2C1, I2C2 ...)
* - I2Cx_ER_IRQHandler() will call I2C_GetFlagStatus() or I2C_GetITStatus() functions
* to determine which error occurred.
* - I2C_ClearFlag() \ I2C_ClearITPendingBit() \ I2C_SoftwareResetCmd()
* \ I2C_GenerateStop() will be use to clear the error flag and source,
* and return to correct communication status.
*
*
* b) Second way:
* Using the function to get a single word(uint32_t) composed of status register 1 and register 2.
* (Status Register 2 value is shifted left by 16 bits and concatenated to Status Register 1).
* - When to use:
*
* - This function is suitable for the same applications above but it
* don't have the limitations of I2C_GetFlagStatus() function .
* The returned value could be compared to events already defined in the
* library (ch64x_i2c.h) or to custom values defined by user.
* - This function can be used to monitor the status of multiple flags simultaneously.
* - Contrary to the I2C_CheckEvent () function, this function can choose the time to
* accept the event according to the user's needs (when all event flags are set and
* no other flags are set, or only when the required flags are set)
*
* - Limitations:
* - User may need to define his own events.
* - Same remark concerning the error management is applicable for this
* function if user decides to check only regular communication flags (and
* ignores error flags).
*
*
* c) Third way:
* Using the function I2C_GetFlagStatus() get the status of
* one single flag .
* - When to use:
* - This function could be used for specific applications or in debug phase.
* - It is suitable when only one flag checking is needed .
*
* - Limitations:
* - Call this function to access the status register. Some flag bits may be cleared.
* - Function may need to be called twice or more in order to monitor one single event.
*/
/*********************************************************
*
* a) Basic state monitoring(First way)
********************************************************
*/
ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT);
/*********************************************************
*
* b) Advanced state monitoring(Second way:)
********************************************************
*/
uint32_t I2C_GetLastEvent(I2C_TypeDef* I2Cx);
/*********************************************************
*
* c) Flag-based state monitoring(Third way)
*********************************************************
*/
FlagStatus I2C_GetFlagStatus(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG);
void I2C_ClearFlag(I2C_TypeDef *I2Cx, uint32_t I2C_FLAG);
ITStatus I2C_GetITStatus(I2C_TypeDef *I2Cx, uint32_t I2C_IT);
void I2C_ClearITPendingBit(I2C_TypeDef *I2Cx, uint32_t I2C_IT);
#ifdef __cplusplus
}
#endif
#endif